Joining data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.

Steps 1-6

  1. Load the R packages we will use.
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
  1. Which variables are the same in both data sets
names_drug <- drug_cos %>% names() 
names_health <- health_cos %>% names() 
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with
drug_subset <- drug_cos %>% 
  select(ticker, year, grossmargin) %>% 
  filter(year == 2018)

health_subset <- health_cos %>% 
  select(ticker, year, revenue, gp, industry) %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin   revenue        gp industry              
   <chr>  <dbl>       <dbl>     <dbl>     <dbl> <chr>                 
 1 ZTS     2018       0.672   5.82e 9   3.91e 9 Drug Manufacturers - …
 2 PRGO    2018       0.387   4.73e 9   1.83e 9 Drug Manufacturers - …
 3 PFE     2018       0.79    5.36e10   4.24e10 Drug Manufacturers - …
 4 MYL     2018       0.35    1.14e10   4.00e 9 Drug Manufacturers - …
 5 MRK     2018       0.681   4.23e10   2.88e10 Drug Manufacturers - …
 6 LLY     2018       0.738   2.46e10   1.81e10 Drug Manufacturers - …
 7 JNJ     2018       0.668   8.16e10   5.45e10 Drug Manufacturers - …
 8 GILD    2018       0.781   2.21e10   1.73e10 Drug Manufacturers - …
 9 BMY     2018       0.71    2.26e10   1.60e10 Drug Manufacturers - …
10 BIIB    2018       0.865   1.35e10   1.16e10 Drug Manufacturers - …
11 AMGN    2018       0.827   2.37e10   1.96e10 Drug Manufacturers - …
12 AGN     2018       0.861   1.58e10   1.36e10 Drug Manufacturers - …
13 ABBV    2018       0.764   3.28e10   2.50e10 Drug Manufacturers - …

Question: join_ticker

drug_cos_subset <- drug_cos %>% 
  filter(ticker == "MYL")

drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla… United …        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla… United …        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla… United …        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla… United …        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla… United …        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla… United …        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla… United …        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla… United …        0.258       0.35      0.031 0.074 0.028
# … with 1 more variable: year <dbl>
combo_df <- drug_cos_subset %>% 
  left_join(health_cos)

combo_df
# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla… United …        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla… United …        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla… United …        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla… United …        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla… United …        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla… United …        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla… United …        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla… United …        0.258       0.35      0.031 0.074 0.028
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name <- combo_df %>% 
  distinct(name) %>% 
  pull() 

*Assign the company location to co_location

co_location <- combo_df %>% 
  distinct(location) %>% 
  pull() 

*Assign the industry to co_industry group

co_industry <- combo_df %>% 
  distinct(industry) %>% 
  pull()

The company Mylan NV is located in United Kingdom and is a member of the Drug Manufacturers - Specialty & Generic industry group.


combo_df_subset <- combo_df %>% 
  select(year, grossmargin, netmargin, revenue, gp, netincome)

combo_df_subset
# A tibble: 8 x 6
   year grossmargin netmargin     revenue         gp netincome
  <dbl>       <dbl>     <dbl>       <dbl>      <dbl>     <dbl>
1  2011       0.418     0.088  6129825000 2563364000 536810000
2  2012       0.428     0.094  6796100000 2908300000 640900000
3  2013       0.44      0.09   6909100000 3040300000 623700000
4  2014       0.457     0.12   7719600000 3528000000 929400000
5  2015       0.447     0.09   9429300000 4216100000 847600000
6  2016       0.424     0.043 11076900000 4697000000 480000000
7  2017       0.402     0.058 11907700000 4783100000 696000000
8  2018       0.35      0.031 11433900000 4001600000 352500000

combo_df_subset %>% 
  mutate(grossmargin_check = gp / revenue,
         close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue     gp netincome
  <dbl>       <dbl>     <dbl>   <dbl>  <dbl>     <dbl>
1  2011       0.418     0.088 6.13e 9 2.56e9 536810000
2  2012       0.428     0.094 6.80e 9 2.91e9 640900000
3  2013       0.44      0.09  6.91e 9 3.04e9 623700000
4  2014       0.457     0.12  7.72e 9 3.53e9 929400000
5  2015       0.447     0.09  9.43e 9 4.22e9 847600000
6  2016       0.424     0.043 1.11e10 4.70e9 480000000
7  2017       0.402     0.058 1.19e10 4.78e9 696000000
8  2018       0.35      0.031 1.14e10 4.00e9 352500000
# … with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>

*Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001

combo_df_subset %>% 
  mutate(netmargin_check = netincome / revenue,
         close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue     gp netincome netmargin_check
  <dbl>       <dbl>     <dbl>   <dbl>  <dbl>     <dbl>           <dbl>
1  2011       0.418     0.088 6.13e 9 2.56e9 536810000          0.0876
2  2012       0.428     0.094 6.80e 9 2.91e9 640900000          0.0943
3  2013       0.44      0.09  6.91e 9 3.04e9 623700000          0.0903
4  2014       0.457     0.12  7.72e 9 3.53e9 929400000          0.120 
5  2015       0.447     0.09  9.43e 9 4.22e9 847600000          0.0899
6  2016       0.424     0.043 1.11e10 4.70e9 480000000          0.0433
7  2017       0.402     0.058 1.19e10 4.78e9 696000000          0.0584
8  2018       0.35      0.031 1.14e10 4.00e9 352500000          0.0308
# … with 1 more variable: close_enough <lgl>

Question: summarize_industry

health_cos  %>% 
  group_by(industry)  %>% 
  summarize(mean_netmargin_percent = mean(netincome / revenue) * 100)
# A tibble: 9 x 2
  industry                                 mean_netmargin_percent
* <chr>                                                     <dbl>
1 Biotechnology                                             -4.66
2 Diagnostics & Research                                    13.1 
3 Drug Manufacturers - General                              19.4 
4 Drug Manufacturers - Specialty & Generic                   5.88
5 Healthcare Plans                                           3.28
6 Medical Care Facilities                                    6.10
7 Medical Devices                                           12.4 
8 Medical Distribution                                       1.70
9 Medical Instruments & Supplies                            12.3 
health_cos  %>% 
  group_by(industry)  %>% 
  summarize(median_netmargin_percent = median(netincome / revenue) * 100)
# A tibble: 9 x 2
  industry                                 median_netmargin_percent
* <chr>                                                       <dbl>
1 Biotechnology                                                7.62
2 Diagnostics & Research                                      12.3 
3 Drug Manufacturers - General                                19.5 
4 Drug Manufacturers - Specialty & Generic                     9.01
5 Healthcare Plans                                             3.37
6 Medical Care Facilities                                      6.46
7 Medical Devices                                             14.3 
8 Medical Distribution                                         1.03
9 Medical Instruments & Supplies                              14.0 
health_cos  %>% 
  group_by(industry)  %>% 
  summarize(min_netmargin_percent =  min(netincome / revenue) * 100)
# A tibble: 9 x 2
  industry                                 min_netmargin_percent
* <chr>                                                    <dbl>
1 Biotechnology                                         -197.   
2 Diagnostics & Research                                   0.399
3 Drug Manufacturers - General                           -34.9  
4 Drug Manufacturers - Specialty & Generic               -76.0  
5 Healthcare Plans                                        -0.305
6 Medical Care Facilities                                  1.40 
7 Medical Devices                                        -56.1  
8 Medical Distribution                                    -0.102
9 Medical Instruments & Supplies                         -47.1  
health_cos  %>% 
  group_by(industry)  %>% 
  summarize(max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 2
  industry                                 max_netmargin_percent
* <chr>                                                    <dbl>
1 Biotechnology                                            68.8 
2 Diagnostics & Research                                   26.3 
3 Drug Manufacturers - General                            101.  
4 Drug Manufacturers - Specialty & Generic                 24.5 
5 Healthcare Plans                                          6.02
6 Medical Care Facilities                                   8.30
7 Medical Devices                                          49.4 
8 Medical Distribution                                      4.51
9 Medical Instruments & Supplies                           48.9 

Question: inline_ticker

health_cos_subset <- health_cos %>% 
  filter(ticker == "BMY")
health_cos_subset
# A tibble: 8 x 11
  ticker name  revenue      gp    rnd netincome  assets liabilities
  <chr>  <chr>   <dbl>   <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 BMY    Bris… 2.12e10 1.56e10 3.84e9    3.71e9 3.30e10 17103000000
2 BMY    Bris… 1.76e10 1.30e10 3.90e9    1.96e9 3.59e10 22259000000
3 BMY    Bris… 1.64e10 1.18e10 3.73e9    2.56e9 3.86e10 23356000000
4 BMY    Bris… 1.59e10 1.19e10 4.53e9    2.00e9 3.37e10 18766000000
5 BMY    Bris… 1.66e10 1.27e10 5.92e9    1.56e9 3.17e10 17324000000
6 BMY    Bris… 1.94e10 1.45e10 5.01e9    4.46e9 3.37e10 17360000000
7 BMY    Bris… 2.08e10 1.47e10 6.48e9    1.01e9 3.36e10 21704000000
8 BMY    Bris… 2.26e10 1.60e10 6.34e9    4.92e9 3.50e10 20859000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>


Run the code below

health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Bristol Myers Squibb Co"
co_name <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

In following chuck

co_industry <- health_cos_subset %>% 
  distinct(industry) %>% 
  pull(industry)

This is outside the Rchunck. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text. The company Bristol Myers Squibb Co is a member of the Drug Manufacturers - General group.

Steps 7-11

  1. Prepare data for the plots
df <- health_cos %>% 
  group_by(industry) %>% 
  summarize(med_rnd_rev = median(rnd/revenue))
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
  1. Create a static bar chart
ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev
         )) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_ipsum()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2021-03-16-joining-data"))
  1. Create an interactive bar chart using the package [echarts4r]
df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry
    )  %>% 
  e_bar(
    serie = med_rnd_rev, 
    name = "median"
    )  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median industry R&D expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
    )  %>%
  e_y_axis(
    show = FALSE
  )  %>% 
  e_theme("infographic")